
Custom Wireless Joystick Development with
Arduino and Linux Integration

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica
Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Corso di Laurea in Ingegneria Informatica e Automatica

Candidate

Federico Gerardi
ID number 1982783

Thesis Advisor

Prof. Giorgio Grisetti

Academic Year 2023/2024

Custom Wireless Joystick Development with Arduino and Linux Integration
Bachelor’s thesis. Sapienza – University of Rome

© 2024 Federico Gerardi. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: federico.gerardi03@gmail.com

mailto:federico.gerardi03@gmail.com

ii

A mio padre, Riccardo Gerardi

iii

Contents

1 Introduction 1

2 Related works and bases 2
2.1 AVR . 3

2.1.1 Introduction to AVR . 3
2.1.2 UART . 4
2.1.3 avrdude . 4
2.1.4 avr-objcopy . 5

2.2 HC-12 . 6
2.2.1 Introduction to HC-12 . 6
2.2.2 Definition of pins . 6

2.3 Make . 7
2.3.1 Introduction to make and makefiles 7
2.3.2 Arduino and makefile . 7

2.4 ioctl . 9
2.5 Git . 10

3 My Contribution 11
3.1 Hardware . 12
3.2 Transmitter . 13

3.2.1 Read the data from the joystick 13
3.2.2 Send the joystick data to the UART0 14

3.3 Receiver . 16
3.3.1 Read the data from the UART1 16
3.3.2 Send the data through the UART0 16
3.3.3 Receiver Main . 16

3.4 Driver . 17
3.4.1 Create the virtual joystick . 17
3.4.2 Read the data from the Serial 18
3.4.3 Send the data to the virtual joystick 19

3.5 Test Game . 20
3.6 Repository . 22

4 Use cases and experiments 23
4.1 Initial phase . 24

4.1.1 Clone the repository . 24
4.1.2 Transmitter and Receiver . 24
4.1.3 Driver and Test . 24

4.2 Debugging Console . 25
4.3 jstest-gtk . 26

Contents iv

4.3.1 Graphical View . 26
4.3.2 Joystick calibration . 27

4.4 Test Game . 29

5 Conclusions 30

Bibliography 31

1

Chapter 1

Introduction

The goal of this thesis is to explain how to create a complex Arduino project
that can communicate with other devices through serial communication and radio. I
am going to explain how to:

• Read analogic and digital data from external modules

• Communicate via radio

• Serial communication

• Input and Output device manipulation in Linux

• Organize a project using a version control system

My contribution can be useful for people who want to start their journey in
embedded programming and operating systems.

Approaching a difficult topic like embedded programming could be very compli-
cated. This thesis introduces a step-by-step guide to approach this world.

The final project is a wireless joystick controller that can be used on Linux PCs
to play video games, but this project can have many applications in other situations.

For example, joysticks for drones are expensive, reading this report, people can
build one by themselves easily, saving money and learning something interesting.

It can also be used to control robots, internet of things devices, smart home
devices, and many more...

This thesis gives a background also on Linux management of input and output
devices I’m going to explain the creation of virtual devices, and how to control them.

If you want to create automatic tests for your applications, this part is very
useful for you. It can also be interesting for people who work with AI to play video
games automatically.

We are going to create a video game that uses the Linux Joystick Library. This
part is very useful for game developers.

2

Chapter 2

Related works and bases

In this chapter, I’m going to explain a few concepts that are important to know
before we start the project. I will explain basic concepts like:

• AVR microcontrollers and how to program them

• What is an HC-12 module

• What is make, and why it is so helpful

• What is the ioctl system call

• What is git

2.1 AVR 3

2.1 AVR
2.1.1 Introduction to AVR

AVR is a system that contains a CPU, RAM, peripherals and flash memory to
store a program, in other words, a microcontroller. Microcontrollers are very useful
for embedded applications and can be used in a lot of circumstances, like Internet of
Things, drones, etc.

More precisely We are going to use the AVR-2560 microcontroller that has the
following schema:

Figure 2.1. AVR-2560 Schema

To store a program in a microcontroller we need a programmer or a bootloader.
To avoid the use of a programmer, We will use an Arduino Mega which is a board
that contains an AVR-2560 and another microcontroller that works as a bootloader.

We will also use an Arduino Uno that is very similar to the Arduino Mega but
contains an AVR-328p

Arduino is an open-source family of boards that contains everything we need to
work with AVR microcontrollers like bootloaders and USB-to-serial converters.

2.1 AVR 4

2.1.2 UART
UART stands for Universal Asynchronous Receiver-Transmitter. It’s one of the

AVR peripherals for serial ports. The UART serial port is controlled by:

• UDR: the data register that contains the data being sent and received

• UCSR: the status register

• UBRR: the register that tells how fast the transmission should be

2.1.3 avrdude
Users can download and upload data on the on-chip memories of AVR mi-

crocontrollers using the Avrdude program. It can be used to program the Flash,
EEPROM and where supported by the programmer, lock bits, fuses that hold the
microcontroller’s configuration and other memories that the part might have.

Avrdude is a command line tool that can be used as follows:
avrdude -p partno options ...

Command line options are used to control Avrdude’s behaviour. Here you can
find a list of the most useful options:

• -p partno
This option tells avrdude what part (MCU) is connected to the programmer.
For example, if you are using Arduino Mega the partno parameter will be
m2560. Otherwise, if you are using Arduino Uno the partno parameter will be
m328p

• -P port
This option tells avrdude the connection through which the programmer is
attached. This can be a parallel, serial, spi or linuxgpio connection.

• -b baud rate
This option overrides the RS-232 connection baud rate specified in the respec-
tive programmer’s baud rate entry of the configuration file or defined by the
default_baudrate entry in your configuration file.

• -c programmer-id
This option specifies the programmer to be used. For example, if you are using
Arduino Mega the programmer will be wiring. Otherwise, if you are using
Arduino Uno the programmer will be arduino.

• -C config-file
This option uses the specified config file for configuration data. This file
contains all programmer and part definitions that avrdude knows about.

• -U memory:op:filename[:format]
This option performs a memory operation when it is its turn. The memory
field specifies the memory type to operate on. The memory field can also be a
comma-separated list of memories, eg, flash, eeprom.

• -D
This option disables auto-erase for flash. When the -U option for writing to
any flash memory is specified, avrdude will perform a chip erase before starting

2.1 AVR 5

any of the programming operations, since it generally is a mistake to program
the flash without performing an erase first. This option disables that. Setting
-D implies -A.

• -A
This option disables the automatic removal of trailing 0xFF sequences in file
input that is programmed to flash and in AVR reads from flash memory. This
option should be used when the programmer hardware, or bootloader software
for that matter, does not carry out chip erase and instead handles the memory
erase on a page level. Arduino bootloader exhibits this behaviour for this
reason -A is engaged by default.

2.1.4 avr-objcopy
avr-objcopy is a program that copies the contents of an object file to another.

It uses the GNU BFD Library to read and write the object files. It can write the
destination object file in a format different from that of the source object file.

avr-objcopy is a command line tool that can be used as follows:
avr - objcopy infile [outfile] options ...

Command line options are used to control Avrdude’s behaviour. Here you can
find a list of the most useful options:

• infile
outfile
The input and output files, respectively. If you do not specify outfile, objcopy
creates a temporary file, named the same as the infile.

• -O bfdname
Write the outfile using the object format bfdname

• -R sectionname
This option is useful to remove sections which contain information that is not
needed by the binary file

2.2 HC-12 6

2.2 HC-12
2.2.1 Introduction to HC-12

HC-12 wireless serial port communication module supports long-distance wireless
transmission, up to 1 Km in open space and 5000 bps baud rate in the air. Its
working frequency range is between 433.4 MHz and 473.0 MHz with up to 100
communication channels. With a maximum of 100 mW (20 dBm) transmitting
power and three working modes (to adapt it to different situations), It’s one of the
best new-generation modules for wireless communication.

The MCU inside the module is what makes this module the easiest to use, the
user doesn’t need to program the module separately.

The following schema compares the difference between a serial physical connection
and an HC-12 module connection. As you can see is very easy to use.

Figure 2.2. Comparation between physical connection and HC-12 module

2.2.2 Definition of pins

Figure 2.3. HC-12 module

1. VCC, between 3.2V and 5.5V not less than 200 mA

2. GND

3. RXD, UART input port

4. TXD, UART output port

2.3 Make 7

2.3 Make
2.3.1 Introduction to make and makefiles

The make utility automatically determines which pieces of a large program need
to be recompiled, and issue commands to recompile them.

Suppose you have a project with hundreds of c files and thousands of lines of code
for each. Every time you modify a file and want to compile the project, you have to
compile every file. If you have modified only one file, why should you re-compile all
the files? This is a waste of energy and time.

Make solves this problem, by compiling only what you have modified.

Make needs a special file called makefile to know what to do. Usually, the
makefile tells make how to compile and link a program.

Here you can see an example of a Makefile:
Variables
CC = gcc
CFLAGS = -Wall -Wextra -O2
SRC = test.c
TARGET = test

Rule: Dependencies
all: $(TARGET)

$(TARGET): $(SRC)
$(CC) $(CFLAGS) -o $(TARGET) $(SRC)

Rule that deletes all the compiled files
clean:

rm -f $(TARGET)

Rule that clean and build
rebuild : clean all

.PHONY: all clean rebuild

In the first section, there are the variables. Then you can see the first rule called
"all" that compiles all the modified files. I have also defined a "clean" rule to delete
all the compiled files and a "rebuild" one that cleans and compiles all the files.

2.3.2 Arduino and makefile
Make can call every bash command without any problem. So we can create a

special makefile that uses avr-gcc instead of gcc and call avr-objcopy and avrdude
to convert the elf file and upload it to Arduino.

INCLUDE_DIRS =-I. -Iavr_common
CXX=avr -g++
CC=avr -gcc
AS=avr -gcc
AVRDUDE = avrdude

CC_OPTS_GLOBAL =\
-O3\
-funsigned -char\

2.3 Make 8

-funsigned - bitfields \
-fshort -enums\
-Wall\
$(INCLUDE_DIRS)\
-DF_CPU =16000000 UL\

TARGET =uno
AVRDUDE_PORT =/ dev/ ttyACM0

ifeq ($(TARGET), mega)
CC_OPTS_GLOBAL += -mmcu= atmega2560 -D__AVR_3_BYTE_PC__
AVRDUDE_FLAGS += -p m2560
AVRDUDE_BAUDRATE = 115200
AVRDUDE_BOOTLOADER = wiring

endif

ifeq ($(TARGET), uno)
CC_OPTS_GLOBAL += -mmcu= atmega328p
AVRDUDE_FLAGS += -p m328p
AVRDUDE_BAUDRATE = 115200
AVRDUDE_BOOTLOADER = arduino

endif

CC_OPTS =$(CC_OPTS_GLOBAL) --std=gnu99
CXX_OPTS =$(CC_OPTS_GLOBAL) --std=c++17
AS_OPTS =-x assembler -with -cpp $(CC_OPTS)

AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET):i
AVRDUDE_FLAGS += -P $(AVRDUDE_PORT) -b $(AVRDUDE_BAUDRATE)
AVRDUDE_FLAGS += -D -q -V -C /usr/share/ arduino / hardware /tools/avr

/../ avrdude .conf
AVRDUDE_FLAGS += -c $(AVRDUDE_BOOTLOADER)

.phony: clean all

all: $(BINS)

%.o: %.c
$(CC) $(CC_OPTS) -c -o $@ $<

%.o: %.s
$(AS) $(AS_OPTS) -c -o $@ $<

%. elf: %.o $(OBJS)
$(CC) $(CC_OPTS) -o $@ $< $(OBJS) $(LIBS)

%. hex: %. elf
avr - objcopy -O ihex -R . eeprom $< $@
$(AVRDUDE) $(AVRDUDE_FLAGS) -U flash:w:$@:i

clean:
rm -rf $(OBJS) $(BINS) *. hex *~ *.o

. SECONDARY : $(OBJS)

As you can see we set variables in different ways based on which Arduino board
we are using. Also, we define a new rule called %.hex. Given an elf file, this rule
will:

1. Call avr-objcopy to convert the elf file to a hex file

2. Call avrdude to upload the hex file to the Arduino through the serial port

2.4 ioctl 9

2.4 ioctl
The ioctl system call manipulates the underlying device parameters of special files.

ioctl call takes as parameters:

1. an open file descriptor

2. a request code number

3. an untyped pointer to data

The kernel sends an ioctl call straight to the device driver, which reads the
request number and data in the right way.

ioctl can also be used to create virtual devices. You can use the open function
to open the /dev/uinput device and call the ioctl UI_DEV_CREATE operation.
These operations will respectively create a file descriptor for a virtual device and
the new virtual device.

The virtual device needs a few ioctl calls (especially UI_SETUP_*) to allow
Linux to know the type of device created. For example, if you want to create a
virtual joystick you need to set:

• UI_SETUP_EVBIT to EV_ABS, so Linux will know that the new device
will have events that are absolute and not relative

• UI_SETUP_ABSBIT to ABS_X, so Linux will know that the new device
will have events for the x-axis absolute

• UI_SETUP_ABSBIT to ABS_Y, so Linux will know that the new device
will have events for the y-axis absolute

• UI_SETUP_EVBIT to EV_KEY, so Linux will know that the new device
will have binary events

• UI_SETUP_KEYBIT to BTN_JOYSTICK, so Linux will know that the new
device will have a joystick button

With these operations, Linux will automatically understand that the device is a
joystick controller.

2.5 Git 10

2.5 Git
Git is the most used software for version control systems in the world. Developed

by the Linux developers community to carry on the Linux kernel open source project.

Git Goals are:

• Speed

• Data integrity

• Support for distributed, non-linear workflows running on different computers

• Capable of supporting very large projects

It’s compatible with existing systems and protocols like Hypertext Transfer Pro-
tocol Secure (HTTPS), Hypertext Transfer Protocol (HTTP), File Transfer Protocol
(FTP) and Secure Shell (SSH).

In Git the user clones the repository from a server. The clone operation is
basically a download of the repository. After that operation, the user will have a
local copy of the repository.

The user can do a few operations with the local copy like:

• Update his local copy with the new versions from the server

• Edit some files and commit the changes

It’s important to know that the local copy keeps the history of every commit.
This allows the user to roll back to an older commit if something is not working.

When you are ready you can push the changes to the server and synchronize the
repositories.

Git uses branches to allow people to work together without any issues that can
occur when a few or two people are editing the same file.

When a user needs to start a new task he can create a branch from the main
one. The new branch will be identical to the main one, but only one user will work
on it. When the user ends his job with that task, he can merge his branch to the
main one. If the files the user has edited, meanwhile have not changed in the main
branch, everything is fine, the user can merge without any problem. But if the files
the user has edited, meanwhile have changed in the main branch, there is a conflict
and git helps the user to solve the conflict and merge the branch.

There are a lot of different git providers, the most famous are:

• Github

• Gitlab

• Bitbucket

11

Chapter 3

My Contribution

In this chapter, we are going to start the project. I am going to explain how to:

• Connect the components physically

• Create the firmware for both the transmitter and receiver

• Create the driver (virtual joystick)

• Create a videogame that works with the Linux controller library

• Work with repositories

3.1 Hardware 12

3.1 Hardware
For this project, I will use:

• Arduino Mega

• Arduino Uno

• 2x HC-12 modules

• Joystick module

• Jumpwires

I have connected them as you can see in the following schema:

Figure 3.1. Physical Schema

I have connected to the Arduino Uno the joystick and the HC-12 module. So
Arduino Uno will be the transmitter. I have taken this decision because Arduino Uno
has only one Serial UART, while Arduino Mega has 3 Serial UARTs. Using Arduino
Uno to receive data and retransmit on the same UART could cause conflict problems.

So I have connected the HC-12 module to the UART0 (the same as the USB
port) to Arduino Uno (from now we will call him transmitter) and I have connected
the other HC-12 module to the UART1 to Arduino Mega (from now on we will call
him receiver).

The joystick is connected to the transmitter’s 5 V and GND. The X and Y axis
values are connected to A0 and A1 respectively (2 generic analogic pins are ok). The
joystick button is connected to the digital pin 8 (1 generic digital pin is ok).

3.2 Transmitter 13

3.2 Transmitter
The transmitter’s role is:

1. Read the data from the joystick

2. Send the joystick data to the UART0 (The HC-12 module will transmit the
data)

3.2.1 Read the data from the joystick
To read analogic data we are going to use an Analog-Digital converter, included

on AVR microcontrollers. This is because AVR microcontrollers are digital devices
so they can understand only binary and work with discrete voltage levels. We need
to do a few operations to use the ADC so we define the adc_init function to:

1. Set the ADC prescaler to divide the system clock by 128. Important because
the ADC requires a clock frequency slower than the system clock to get accurate
readings.

2. Then we set the voltage reference to AVcc (5 V). This guarantees that the
ADC readings are scaled to the AVcc voltage.

3. Finally we can activate the ADC setting the ADEN bit in the ADC Control
and Status Register A.

Here is the equivalent C code:
void adc_init () {

// Setting ADC Prescaler to 128
ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);

// Set voltage to AVcc with an extern capacitor on AREF pin
ADMUX |= (1 << REFS0);

// Activate ADC
ADCSRA |= (1 << ADEN);

}

Reading digital data is way easier because we don’t need to do any conversion.
We only have to set the pin as input and activate the pull-up resistor.

Here is the equivalent C code for the PIN 8:
void digital_init () {

// Setting port as input
DDRB &= ~(1 << 0);

// Activating pull up resistor
PORTB |= (1 << 0);

}

Now that everything has been set up we can read data.

3.2 Transmitter 14

I have created a function that allows reading analog data from a generic channel,
using the ADC. The function chooses the channel, starts the conversion, waits until
the conversion is completed and then returns the value.

uint16_t adc_read (uint8_t ch) {
// Select ADC channel
ch &= 0 b00000111 ;
ADMUX = (ADMUX & 0xF8) | ch;

// Start conversion
ADCSRA |= (1 << ADSC);

// Wait for the conversion to complete
while (ADCSRA & (1 << ADSC));

return (ADC);
}

I have also created a function to read digital data, but it is basically an if that
checks if the bit of the pin 8 is 1 or 0.

uint8_t digital_read () {
return (PINB &(1 << 0))==0;

}

3.2.2 Send the joystick data to the UART0
To send data through the UART0, we need to set it up.
void UART_init (uint16_t baudrate) {

uint16_t ubrr_value = (F_CPU / 16 / baudrate) - 1;

UBRR0H = (uint8_t)(ubrr_value >> 8);
UBRR0L = (uint8_t) ubrr_value ;

UCSR0B = (1 << RXEN0) | (1 << TXEN0);
UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);

// Activating UART interrupts
UCSR0B |= (1 << UDRIE0);

}

This function:

1. Calculates the UBRR value (UART Baud Rate Register) using the F_CPU
value (CPU Frequency) and the baud rate parameter.

2. Insert the UBRR value in the two separated registers UBRR0H (High) and
UBRR0L (Low).

3. Activate the receiver and transmitter.

4. Set the data frame to 8 bits and 1 stop bit.

5. Enable the UART Data Register Empty Interrupt.

The UART0 will be initialized with 9600 baud as baud rate. This is the
recommended baud rate by the HC-12 module’s datasheet.

3.2 Transmitter 15

We need to decide the format to send data through the UART0. I have designed
this structure that fits perfectly for this job.

typedef struct __attribute__ ((packed)) {
uint16_t x_axis ;
uint16_t y_axis ;
uint8_t button ;

} joystick_event ;

The attribute packed ensures that the structure is packed without any padding
between its members.

So we have initialized the UART, we have decided on the data format, and now
we can finally send the data.

void UART_transmit_struct (joystick_event * ev) {
uint8_t * byte = (uint8_t *) ev;
uint8_t size = sizeof (joystick_event);

for (uint8_t i = 0; i < size; i++) {
uint8_t next = (tx_index + 1) % TX_BUFFER_SIZE ;
while (next == tx_read_index); // Spinlock buffer full
tx_buffer [tx_index] = byte[i];
tx_index = next;

}

// Activating Transmission Interrupt
UCSR0B |= (1 << UDRIE0);

}

ISR(USART_UDRE_vect) {
if (tx_read_index != tx_index) {

UDR0 = tx_buffer [tx_read_index];
tx_read_index = (tx_read_index + 1) % TX_BUFFER_SIZE ;

} else {
UDR0 = ’\n’;
UCSR0B &= ~(1 << UDRIE0); // Send \n and stop transmission if

the buffer is empty
}

}

The first function sends the joystick_event struct through the UART. We send
byte-by-byte the whole struct, we use a TX buffer to avoid problems due to serial
saturation, and we trigger the transmission interrupt.

When we activate the transmission interrupt, the ISR (Interrupt Service Routine)
starts. When the ISR starts, if there is data in the buffer, data is written in UDR0
(serial port 0). Otherwise, we write the new line character as a reminder for the end
of the struct.

3.3 Receiver 16

3.3 Receiver
The receiver role is:

1. Read the data from the UART1

2. Send the data through the UART0

3.3.1 Read the data from the UART1
To read data from UART1 we need to configure it first. The initialization

function is the same as the transmitter, but we don’t initialize only the UART0, but
also the UART1. (It’s the same function but we will point to the registers of the
UART1, so UBRR1 instead of UBRR0).

Now we can read the data with the following function:
unsigned char uart1_receive (void) {

while (!(UCSR1A & (1 << RXC1)));
return UDR1;

}

That waits for a byte in UART1 and returns it.

3.3.2 Send the data through the UART0
The UART0 is already initialized in 3.3.1, so we can already write with the

following function:
void uart0_transmit (unsigned char data) {

while (!(UCSR0A & (1 << UDRE0)));
UDR0 = data;

}

We wait until the transmission buffer is empty and we send data to UART0.

3.3.3 Receiver Main

int main(void) {
uart1_init ();
uart0_init ();

while (1) {
unsigned char data = uart1_receive ();
uart0_transmit (data);

}

return 0;
}

So we get the data from UART1 and forward it to the UART0.

3.4 Driver 17

3.4 Driver
The driver’s role is:

1. Create the virtual joystick

2. Read the data from the Serial

3. Send the data to the virtual joystick

3.4.1 Create the virtual joystick
To create a virtual joystick we need to open a new file descriptor that points to

/dev/uinput.

/dev/uinput is a special device file that allows us to emulate input devices if we
write on it.

Now that we have the file descriptor, we can define a new function to initialize
the new virtual joystick.

void joystick_init (int fd , struct uinput_setup * usetup) {
int ret;

// Event ABS
ret = ioctl(fd , UI_SET_EVBIT , EV_ABS);
if (ret == -1) handle_error ("Error ioctl EV_ABS ");

ret = ioctl(fd , UI_SET_ABSBIT , ABS_X);
if (ret == -1) handle_error ("Error ioctl ABS_X");

ret = ioctl(fd , UI_SET_ABSBIT , ABS_Y);
if (ret == -1) handle_error ("Error ioctl ABS_Y");

// Event button
ret = ioctl(fd , UI_SET_EVBIT , EV_KEY);
if (ret == -1) handle_error ("Error ioctl EV_KEY ");

ret = ioctl(fd , UI_SET_KEYBIT , BTN_JOYSTICK);
if (ret == -1) handle_error ("Error ioctl BTN_JOYSTICK ");

// Configuration
memset (usetup , 0, sizeof (struct uinput_setup));
usetup ->id. bustype = BUS_USB ;
usetup ->id. vendor = 0x0198;
usetup ->id. product = 0x2783;
strcpy (usetup ->name , " Gieristick ");

ret = ioctl(fd , UI_DEV_SETUP , usetup);
if (ret == -1) handle_error ("Error ioctl DEV_SETUP ");

// Virtual joystick creation
ret = ioctl(fd , UI_DEV_CREATE);
if (ret == -1) handle_error ("Error ioctl DEV_CREATE ");

}

In this function, we define the events (Absolute and Button) in the same way as
I explained in 2.6. Then we define the device info, like vendor, product, bus type
and name; and finally, we create the device.

3.4 Driver 18

3.4.2 Read the data from the Serial
To read the data from the Serial, we need to open and configure it first.

We can open the serial using the open function. The open function will re-
turn the file descriptor of that serial device. Then we can use the termios library
and set attributes like baudrate with the tcsetattr function to a specific file descriptor.

Now that we have opened the serial, and it’s configured correctly, we can start
to read data.

while (1) {
uint8_t buf[BUFFER_SIZE];

int bytes_read = 0;
do {

ret = read(serial_fd , buf+bytes_read , 1);
if (ret == -1) {

if (errno == EINTR) continue ;
else handle_error ("Error reading serial ");

}
} while(buf[bytes_read ++] != ’\n’);

joystick_event_t ev = *((joystick_event_t *) buf);
printf ("x: %d\ty: %d\tbut: %d\n", ev.x_axis , ev.y_axis , ev.

button);
joystick_event (joystick_fd , ev.x_axis , ev.y_axis , ev. button);

}

As you can see, we create a buffer, we read byte-by-byte everything from the
serial until we get the newline character.

When we get the newline character, it means that the joystick has sent the whole
struct, so we can cast the buffer to a joystick_event_t struct.

We print everything for debugging and then send data to the virtual joystick
through the joystick_event function.

3.4 Driver 19

3.4.3 Send the data to the virtual joystick
Now we analyse the joystick_event function.
void joystick_event (int fd , int x, int y, int btn) {

struct input_event event;
int ret;
memset (& event , 0, sizeof (struct input_event));
event.type = EV_ABS ;

event.code = ABS_X;
event.value = x;
ret = write(fd , &event , sizeof (struct input_event));
if (ret == -1) handle_error ("Error write X");

event.code = ABS_Y;
event.value = y;
ret = write(fd , &event , sizeof (struct input_event));
if (ret == -1) handle_error ("Error write Y");

event.type = EV_KEY ;
event.code = BTN_JOYSTICK ;
event.value = btn;
ret = write(fd , &event , sizeof (struct input_event));
if (ret == -1) handle_error ("Error write button ");

}

We define an input_event struct (from stdlib.h), we allocate the memory for
that struct, and then we write an event for the x-axis, an event for the y axis and
an event for the joystick on the virtual joystick’s file descriptor.

3.5 Test Game 20

3.5 Test Game
I have also created a test game that works with the official Linux Joystick Library.

The game is really simple, there is a matrix that represents the field of the game.
We can move a star with the joystick inside the field of the game.

We define a struct called player position that saves the position of the star.
typedef struct {

int x;
int y;

} player_position ;

We also have to define a matrix of chars for the field. This matrix needs to be
initialized

int matrix_init () {
matrix = malloc (MATRIX_SIZE * sizeof (char *));

pp = malloc (sizeof (player_position));

for (int i=0; i< MATRIX_SIZE ; i++) {
matrix [i] = malloc (MATRIX_SIZE * sizeof (char));

}

for (int i=0; i< MATRIX_SIZE ; i++) {
for (int j=0; j< MATRIX_SIZE ; j++) {

if (i == 0 && j == 0) matrix [0][0] = PLAYER_CHAR ;
else matrix [i][j] = EMPTY_CHAR ;

}
}

pp ->x = 0;
pp ->y = 0;

return 0;
}

The matrix needs to be printed and updated when the user moves the joystick.
void matrix_print () {

for (int i=0; i< MATRIX_SIZE ; i++) {
for (int j=0; j< MATRIX_SIZE ; j++) {

printf ("%c", matrix [i][j]);
}
printf ("\n");

}

printf ("X: %d\tY: %d\n", pp ->x, pp ->y);
}

void matrix_update () {
for (int i=0; i< MATRIX_SIZE ; i++) {

for (int j=0; j< MATRIX_SIZE ; j++) {
if (i == pp ->x && j == pp ->y) matrix [i][j] =

PLAYER_CHAR ;
else matrix [i][j] = EMPTY_CHAR ;

}
}

}

3.5 Test Game 21

Using the js_event struct, and reading from the virtual device we have created
with the driver we can update the matrix with the new position.

int fd;
int ret;
struct js_event js;

fd = open("/dev/input/js1", O_RDONLY);
if (fd == -1) {

perror ("Error connecting joystick ");
return -1;

}

matrix_init ();
system ("clear");
matrix_print ();

while (1) {
ret = read(fd , &js , sizeof (struct js_event));
if (ret != sizeof (struct js_event)) {

perror ("Error reading joystick ");
return -1;

}

if (js.type == JS_EVENT_AXIS) {
// x axis
if (js. number == 1) {

if (js.value < -1000 && pp ->x > 0) pp ->x--; // left
if (js.value > 1000 && pp ->x < MATRIX_SIZE - 1) pp ->x

++; // right
}

// y axis
if (js. number == 0) {

if (js.value < -1000 && pp ->y > 0) pp ->y--; // up
if (js.value > 1000 && pp ->y < MATRIX_SIZE - 1) pp ->y

++; // down
}

matrix_update ();
system ("clear");
matrix_print ();

}

}

3.6 Repository 22

3.6 Repository
For this project, I have created a repository on GitHub. GitHub is the most

famous and most used git hosting website.

I have chosen to create a repository GitHub for these reasons:

• Synchronization: Git allows me to synchronize my work on all my devices with
only one command: git pull

• Debugging: if something that was working, after some changes doesn’t work
anymore, I can go back as much as I want and see the differences.

• Open Source: my project is open source, so anyone who wants can use my
code, modify it for his purpose, or contribute to it with a pull request.

• Issues: if a person uses my code and finds a bug. He can report it to me
through the Issues section.

Here you can find a link to the repository: Github

https://github.com/iGieri/so-project

23

Chapter 4

Use cases and experiments

Now that the project is complete, we are going to test the joystick in different
scenarios. We are going to test with:

• The debugging console

• jstest-gtk

• The test game that we have created in Chapter 3

4.1 Initial phase 24

4.1 Initial phase
4.1.1 Clone the repository

Without code, we can’t do anything, so the first thing to do is to clone the
repository on our PC.

Before doing that we need to ensure that git is correctly installed on our machine.
We can test it by doing:

git -v

If your response is something like:
git version 2.39.3

Everything is ok, otherwise, you need to install Git.
Now that we ensured that git is installed, we can clone the repository:
git clone https :// github .com/ iGieri /so - project .git

4.1.2 Transmitter and Receiver
Transmitter and receiver codes need to be compiled, converted to hex and up-

loaded to the respective Arduino.

For the transmitter, we need to move on his directory, and let make to compile
everything:

cd arduino /
make
make arduino .hex

The Arduino directory is the transmitter’s directory. So we move to that direc-
tory. Make command will call avr-gcc and compile the code, generating elf files.
Make arduino.hex command is saying to make to get the arduino elf file, convert it
to a hex file with avr-objcopy, and upload it to Arduino Uno with avrdude.

For the receiver, we have an identical process, but this time the directory will be
"receiver".

Ensure that both Arduino are connected, or avrdude won’t work.

4.1.3 Driver and Test
Driver and test are programs that will be executed on the PC. So we don’t need

to use AVR programs or upload them somewhere. We need only to compile them
with gcc.

So let’s move to the driver’s directory and compile it.
cd driver /
make

Now we have generated elf files that can be executed by Linux.

We can do the same calling make but in the test directory.

4.2 Debugging Console 25

4.2 Debugging Console
Now everything is set up, we can start testing.

The first test we can do is to see the debugging console. The driver prints on
stdout all the information about the joystick: x-axis, y-axis and if the button is
pressed.

To test it we need to:

1. Connect the transmitter to a power source and the receiver to the PC.

2. Execute the following command:
sudo ./ driver

(superuser permission are required for serial communication)

Now the console will show the status of the controller, and it will update auto-
matically and instantly.

Figure 4.1. Console showing values

4.3 jstest-gtk 26

4.3 jstest-gtk
jstest-gtk is a gui for the jstest program. It’s a program used to test joysticks

that are recognized by Linux.

jstest-gtk has a lot of functionalities, some of which are:

• Have a graphical view of how Linux receive the joystick’s information

• Calibrate the joystick to use it to play a videogame

To use jstest-gtk we need to install it, in Ubuntu-based operating systems we
can run the following command:

sudo apt install jstest -gtk

So we can run jstest-gtk with the following command:
jstest -gtk

4.3.1 Graphical View
When we open jstest-gtk we need to choose which joystick we can use, we will

probably have a lot of joysticks because a lot of mouse devices and touchpads are
recognized by Linux also as joysticks.

We can recognize our joystick by the model name "Gieristick"

Figure 4.2. Joystick choosing screen

4.3 jstest-gtk 27

Now we have a new GUI in front of us showing the x-axis, y-axis and the button
pressed.

Figure 4.3. Joystick statistics Figure 4.4. Axis 0 and Axis 1 changed

If we move the joystick also the gui will move live. We can notice that the
joystick in the GUI doesn’t move very much. We have to calibrate it.

4.3.2 Joystick calibration
To start the calibration, we need to press the button "Calibration"

This pop-up will appear:

Figure 4.5. Calibration popup

4.3 jstest-gtk 28

Now we have to click "Start the calibration"

This phase is crucial, we have to move the joystick 360 degrees and then reposi-
tion it back to the centre and click on "OK".

Check that the values have changed in the pop-up

Figure 4.6. Values changed

Now the joystick is perfectly calibrated. As you can see in the picture now the
joystick on the screen moves in the same way as the real joystick.

Figure 4.7. Joystick statistics Figure 4.8. Axis 0 and Axis 1 changed

4.4 Test Game 29

4.4 Test Game
Let’s try our joystick on the game we have made in 3.5. We have already compiled

it on 4.1.

We can start the game with the following command:
./ test

It’s important to run it with the driver running in the background, otherwise
the game won’t work.

Figure 4.9. Game

If we move the joystick, the star will move in the same direction. So we are
playing the game!

Figure 4.10. Star moved

30

Chapter 5

Conclusions

In this thesis, we have created a wireless joystick with Arduino, recognized by
Linux thanks to its driver.

We have tested the joystick in different ways, with the console, with the jstest-gtk
tool, and with a whole game.

The debugging console works perfectly, sometimes there is a value not correct
caused by interferences. The input lag is very very low, slight.

The jstest-gtk tool and the test game have a small input lag, but evident. This
is caused by the fact that HC-12 requires 9600 baud as baud rate and I am working
on a virtual machine that does not have good specifics.

31

Bibliography

[1] Hans Eirik Bull, Brian S. Dean, Stefan Ruger and Jorg Wunsch “AVRDUDE,
A program for downloading/uploading AVR microcontroller flash, EEPROM
and more“, Version 8.0, 24 August 2024

[2] HC-12 Wireless Serial Port Communication Module User Manual

[3] Richard M. Stallman, Roland McGrath, Paul D. Smith "GNU Make A Program
for Directing Recompilation", GNU make Version 4.4.1, February 2023

[4] Scott Chacon, Ben Straub “Pro Git“, Version 2.1.434, 2024-09-04

32

Acknowledgements

Desidero ringraziare il mio relatore, il Prof. Giorgio Grisetti, per il supporto, per
avermi sempre sostenuto nelle decisioni progettuali e soprattutto per avermi fatto
appassionare alla sua materia.

Ringrazio i miei genitori, Riccardo e Gioia, per il loro sostegno incondizionato e
per avermi incoraggiato a inseguire i miei sogni con determinazione. Li ringrazio
per il loro supporto morale e l’amore che mi hanno sempre donato, che mi hanno
guidato fino a qui.

Voglio ringraziare la mia fidanzata Arianna, per avermi sostenuto nei momenti
più difficili, per esserci sempre stata nei momenti più belli di questo percorso e per
avermi sopportato nelle ore in cui mi ascoltava ripetere.

Un grande grazie a Gabriele Onorato, Pietro Costanzi Fantini e Soykat Amin.
Amici da una vita, che mi hanno sempre incoraggiato e sostenuto, fino a raggiungere
questo traguardo.

Infine ci tengo a ringraziare Cristian Di Iorio, Cristian Apostol, Leonardo Miralli,
Edoardo Costariol e Alberto Guida per le ore passate insieme nelle aule studio, le
pause caffè, le chiaccherate sul calcio e i pranzi a mensa.

	Introduction
	Related works and bases
	AVR
	Introduction to AVR
	UART
	avrdude
	avr-objcopy

	HC-12
	Introduction to HC-12
	Definition of pins

	Make
	Introduction to make and makefiles
	Arduino and makefile

	ioctl
	Git

	My Contribution
	Hardware
	Transmitter
	Read the data from the joystick
	Send the joystick data to the UART0

	Receiver
	Read the data from the UART1
	Send the data through the UART0
	Receiver Main

	Driver
	Create the virtual joystick
	Read the data from the Serial
	Send the data to the virtual joystick

	Test Game
	Repository

	Use cases and experiments
	Initial phase
	Clone the repository
	Transmitter and Receiver
	Driver and Test

	Debugging Console
	jstest-gtk
	Graphical View
	Joystick calibration

	Test Game

	Conclusions
	Bibliography

